Localized surface plasmon-enhanced nanorod micro-LEDs with Ag nanoparticles embedded in insulating and planarizing spin-on glass

Author:

Fang Aoqi1ORCID,Liu Jixin1ORCID,Du Zaifa2ORCID,Tang Penghao1,Xie Yiyang1,Guo Weiling1,Xu Hao1ORCID,Sun Jie34ORCID

Affiliation:

1. Key Laboratory of Optoelectronics Technology, Beijing University of Technology 1 , Beijing 100124, China

2. School of Physics and Electronic Information, Weifang University 2 , Weifang 261061, China

3. Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, and College of Physics and Information Engineering, Fuzhou University 3 , Fuzhou 350100, China

4. Quantum Device Physics Laboratory, Department of Microtechnology and Nanoscience, Chalmers University of Technology 4 , Gothenburg 41296, Sweden

Abstract

To enhance the emission of GaN-based Micro-LEDs (μLEDs), we etched uniform nanorods (NRs) on the μLED surface and filled the nanorod gaps with spin-on glass (SOG) containing mixed Ag nanoparticles (NPs). The nanorod structure creates a conducive environment for close interaction between Ag NPs and quantum wells (QWs), facilitating the coupling of Ag NPs as localized surface plasmons (LSPs) with the QWs to enhance light emission. The SOG acts as an insulating layer between Ag NPs and NRs, preventing electron leakage, while also serving as a planarization material for the nanorod structure. This configuration allows for the fabrication of a planar Indium Tin Oxide layer without short-circuiting the nanorod structure. Compared to traditional planar Micro-LEDs, NR-μLEDs with SOG-encased Ag NPs exhibit a 50% increase in electroluminescence (EL) intensity and a 56% increase in photoluminescence (PL) intensity. This work paves the way for broader applications of LSP in μLEDs.

Funder

National Key Research and Development Program of China

Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China

Fujian provincial projects

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3