Affiliation:
1. School of Aeronautics, Northwestern Polytechnical University 1 , Xi'an 710072, China
2. National Key Laboratory of Aircraft Configuration Design 2 , Xi'an 710072, China
3. National Key Lab of Aerospace Power System and Plasma Technology, Air Force Engineering University 3 , Xi'an 710038, China
Abstract
Oscillation characteristics in a cavity are investigated under real experimental conditions through unsteady numerical simulations of the time-evolving oscillatory damping of a high-Mach-number freestream over a two-dimensional forward-facing cavity. The post-disturbance flow field is taken as the initial condition. Temporal variations in the flow field and wall resistance coefficient are obtained. The forward-facing cavity experiences underdamped oscillatory behavior when subjected to disturbances. The convergence of the oscillations is influenced by the cavity volume, with significant reductions in cavity damping observed when stagnation regions develop within the cavity. During the initial phase of disturbance, each oscillation cycle consists of gas injection and jet phases. In the former, external gas stagnates within the cavity, resulting in a gradual increase in internal density and pressure. High-temperature regions extend from the external flow into the cavity, and bow shocks approach the cavity wall, adversely affecting aerodynamic drag reduction and thermal protection for aircrafts. In the jet phase, the flow field structure resembles the opposing jet. As the gas is expelled, the internal cavity pressure decreases, forming a cold jet that envelops the cavity's surface. The temperature within the boundary layer on the surface decreases, and bow shocks are pushed away from the wall, resulting in thermal-protection and drag-reduction effects. Transitions between phases induce instability in the internal flow states within the cavity. During the transition from the gas injection phase to the jet phase, the wall drag coefficient reaches its peak value; the reverse transition results in the lowest wall drag coefficient.
Funder
National Natural Science Foundation of China
Young Elite Scientists Sponsorship Program by CAST