A study on maglev force and vibration attenuation characteristics of quasi-zero stiffness cruciform maglev isolator

Author:

Wu Jiafeng1ORCID,Liu Wentao1ORCID,Zhang Yun2,Li Tiantian1,Wang Shouren1,Yang Yu’e1

Affiliation:

1. School of Mechanical Engineering, University of Jinan 1 , Jinan 250022, People’s Republic of China

2. Beijing Key Lab of Precision/Ultra-precision Manufacturing Equipment and Control, Tsinghua University 2 , Beijing 100084, People’s Republic of China

Abstract

This paper aims to study the maglev force and vibration attenuation characteristics of quasi-zero stiffness cruciform maglev isolators (CMIs). The maglev force and stiffness of CMIs were analytically computed based on equivalent charge theory, and the transfer function of the system was conducted. The effects of magnet geometry parameters and air gap on the maglev force, stiffness, and vibration transmission characteristics of the CMI system were revealed through parametric analyses. With the increase in magnet length and width, the maximum value of maglev force increases, but the displacement range of near-zero stiffness, amplitude, and phase of the system gradually decrease. With the increase in magnet height, the displacement range of near-zero stiffness increases, while the variation in the amplitude and phase of the system has minimal impact. Meanwhile, in the Halbach array, the height variation of the magnet at different positions has different impacts on the magnetic force. As the air gap increases, the maximum value of maglev force decreases, but the amplitude and phase gradually increase, and the displacement range of near-zero stiffness first rises and then decreases. Finally, an experimental study was carried out to test the vibration attenuation characteristics of CMIs, in which sinusoidal excitation, hammer strike excitation, and random excitation were applied.

Funder

National Natural Science Foundation of China

Shandong innovation Capability Improvement Project of Scientific and Technological Small and Medium-sized EnterPrises

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3