Collimated versatile atomic beam source with alkali dispensers

Author:

Wei Bochao1ORCID,Crawford Alexandra1ORCID,Andeweg Yorick1ORCID,Zhuo Linzhao1ORCID,Li Chao1ORCID,Raman Chandra1

Affiliation:

1. School of Physics, Georgia Institute of Technology, 837 State Street, Atlanta, Georgia 30332, USA

Abstract

Alkali metal dispensers have become an indispensable tool in the production of atomic vapors for magnetometry, alkali vapor cell clocks, and laser cooling experiments. A primary advantage of these dispensers is that they contain alkali metal in an inert form that can be exposed to air without hazard. However, their high temperature of operation (>600 °C) is undesirable for many applications, as it shifts the atomic speed distribution to higher values and presents a radiative heat source that can raise the temperature of its surroundings. For this reason, dispensers are typically not used in line-of-sight applications, such as atomic beam generation. In this work, we present an integrated rubidium dispenser collimating device with a thickness of only 2 mm that produces a beam of atoms traveling primarily in the forward direction. We find that the collimator plate serves to both shield the dispenser's radiation and moderate the velocity of the atomic beam so that the measured longitudinal speed distribution is comparable to that of an ordinary alkali oven at only a slightly elevated temperature of 200 °C. To confirm our theory, we also constructed another compact apparatus consisting of a dispenser and a silicon collimator and the measurements support our conclusion. Our integrated dispenser collimator will particularly be useful in integrated photonics and cavity QED on-chip, where a localized, directed source of Rb vapor in small quantities is needed.

Funder

Air Force Office of Scientific Research

Office of Naval Research

National Science Foundation

Publisher

AIP Publishing

Subject

Physics and Astronomy (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3