Correlation between the formation of new competing group and spatial scale for biodiversity in the evolutionary dynamics of cyclic competition

Author:

Park Junpyo1ORCID

Affiliation:

1. Department of Applied Mathematics, Kyung Hee University, Yongin 17104, Republic of Korea

Abstract

Securing space for species breeding is important in the evolution and maintenance of life in ecological sciences, and an increase in the number of competing species may cause frequent competition and conflict among the population in securing such spaces in a given area. In particular, for cyclically competing species, which can be described by the metaphor of rock–paper–scissors game, most of the previous works in microscopic frameworks have been studied with the initially given three species without any formation of additional competing species, and the phase transition of biodiversity via mobility from coexistence to extinction has never been changed by a change of spatial scale. In this regard, we investigate the relationship between spatial scales and species coexistence in the spatial cyclic game by considering the emergence of a new competing group by mutation. For different spatial scales, our computations reveal that coexistence can be more sensitive to spatial scales and may require larger spaces for frequencies of interactions. By exploiting the calculation of the coexistence probability from Monte-Carlo simulations, we obtain that certain interaction ranges for coexistence can be affected by both spatial scales and mobility, and spatial patterns for coexistence can appear in different ways. Since the issue of spatial scale is important for species survival as competing populations increase, we expect our results to have broad applications in the fields of social and ecological sciences.

Funder

National Research Foundation of Korea

Publisher

AIP Publishing

Subject

Applied Mathematics,General Physics and Astronomy,Mathematical Physics,Statistical and Nonlinear Physics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3