Semi-hydro-equivalent design and performance extrapolation between 100 kJ-scale and NIF-scale indirect drive implosion

Author:

Zhang Huasen12ORCID,Kang Dongguo2ORCID,Wu Changshu2,Hao Liang2ORCID,Shen Hao2,Zou Shiyang2,Zhu Shaoping2ORCID,Ding Yongkun2

Affiliation:

1. Laboratory of Computational Physics, Institute of Applied Physics and Computational Mathematics 1 , Beijing 10088, China

2. Institute of Applied Physics and Computational Mathematics 2 , Beijing 10088, China

Abstract

Extrapolation of implosion performance between different laser energy scales is investigated for indirect drive through a semi-hydro-equivalent design. Since radiation transport is non-hydro-equivalent, the peak radiation temperature of the hohlraum and the ablation velocity of the capsule ablator are not scale-invariant when the sizes of the hohlraum and the capsule are scale-varied. A semi-hydro-equivalent design method that keeps the implosion velocity Vi, adiabat αF, and PL/Rhc2 (where PL is the laser power and Rhc is the hohlraum and capsule scale length) scale-invariant, is proposed to create hydrodynamically similar implosions. The semi-hydro-equivalent design and the scaled implosion performance are investigated for the 100 kJ Laser Facility (100 kJ-scale) and the National Ignition Facility (NIF-scale) with about 2 MJ laser energy. It is found that the one-dimensional implosion performance is approximately hydro-equivalent when Vi and αF are kept the same. Owing to the non-hydro-equivalent radiation transport, the yield-over-clean without α-particle heating (YOCnoα) is slightly lower at 100 kJ-scale than at NIF-scale for the same scaled radiation asymmetry or the same initial perturbation of the hydrodynamic instability. The overall scaled two-dimensional implosion performance is slightly lower at 100 kJ-scale. The general Lawson criterion factor scales as χnoα2D∼S1.06±0.04 (where S is the scale-variation factor) for the semi-hydro-equivalent implosion design with a moderate YOCnoα. Our study indicates that χnoα ≈ 0.379 is the minimum requirement for the 100 kJ-scale implosion to demonstrate the ability to achieve marginal ignition at NIF-scale.

Funder

National Natural Science Foundation of China

Science Challenge Project

Publisher

AIP Publishing

Subject

Electrical and Electronic Engineering,Nuclear Energy and Engineering,Nuclear and High Energy Physics,Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3