Adiabatic conversion between gigahertz quasi-Rayleigh and quasi-Love modes for phononic integrated circuits

Author:

Wang Bao-Zhen1,Xu Xin-Biao23ORCID,Zhang Yan-Lei23,Wang Weiting4,Sun Luyan4,Guo Guang-Can23,Zou Chang-Ling235ORCID

Affiliation:

1. School of Civil Engineering, Hefei University of Technology, Hefei, Anhui 230009, People's Republic of China

2. CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei, Anhui 230026, China

3. CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China

4. Center for Quantum Information, Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing 100084, China

5. National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093, China

Abstract

Unsuspended phononic integrated circuits have been proposed for on-chip acoustic information processing. Limited by the operation mechanism of a conventional interdigital transducer, the excitation of the quasi-Love mode in GaN-on-sapphire is inefficient, and thus, a high-efficiency Rayleigh-to-Love mode converter is of great significance for future integrated phononic devices. Here, we propose a high-efficiency and robust phononic mode converter based on an adiabatic conversion mechanism. Utilizing the anisotropic elastic property of the substrate, the adiabatic mode converter is realized by a simple tapered phononic waveguide. A conversion efficiency exceeding 96% with a [Formula: see text] bandwidth of [Formula: see text] can be realized for phononic waveguides working at GHz frequency band, and excellent tolerance to the fabrication errors is also numerically validated. The device that we proposed can be useful in both classical and quantum phononic information processing, and the adiabatic mechanism could be generalized to other phononic device designs.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Anhui Provincial

China Postdoctoral Science Foundation

Key-Area Research and Development Program of Guangdong Provice

Publisher

AIP Publishing

Subject

Physics and Astronomy (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3