Perspective from a Hubbard U-density corrected scheme towards a spin crossover-mediated change in gas affinity

Author:

Mariano A. L.1ORCID,Fernández-Blanco A.12ORCID,Poloni R.1ORCID

Affiliation:

1. SIMaP, Grenoble-INP, CNRS, University of Grenoble Alpes 1 , 38042 Grenoble, France

2. Institut Laue Langevin 2 , 71 Avenue des Martyrs, CS 20156-38042 Grenoble, France

Abstract

By employing a recently proposed Hubbard U density-corrected scheme within density functional theory, we provide design principles towards the design of materials exhibiting a spin crossover-assisted gas release. Small molecular fragments are used as case study to identify two main mechanisms behind the change in binding energy upon spin transitions. The feasibility of the proposed mechanism in porous crystals is assessed by correlating the change in binding energy of CO2, CO, N2, and H2, upon spin crossover, with the adiabatic energy difference associated with the spin state change of the square-planar metal in Hofmann-type clathrates (M = Fe, Mn, Ni). A few promising cases are identified for the adsorption of intermediate ligand field strength molecules such as N2 and H2. The latter stands out as the most original result as the strong interaction in low spin, as expected from a Kubas mechanism, results in a large change in binding energy. This work provides a general perspective towards the engineering of open-metal site frameworks exhibiting local environments designed to have a spin crossover upon adsorption of specific gas molecules.

Funder

ANR

Emergence@INC CNRS

ILL Ph.D. Program

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3