Prevention and characterization of thin film defects induced by contaminant aggregates in initiated chemical vapor deposition

Author:

Shindler Simon1ORCID,Franklin Trevor1ORCID,Yang Rong1ORCID

Affiliation:

1. Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University , 120 Olin Hall, Ithaca, New York 14853, USA

Abstract

As initiated Chemical Vapor Deposition (iCVD) finds increasing application in precision industries like electronics and optics, defect prevention will become critical. While studies of non-ideal morphology exist in the iCVD literature, no studies investigate the role of defects. To address this knowledge gap, we show that the buildup of short-chain polymers or oligomers during normal operation of an iCVD reactor can lead to defects that compromise film integrity. We used atomic force microscopy to show that oligomer aggregates selectively prevented film growth, causing these hole-like defects. X-ray diffraction and optical microscopy demonstrated the crystallinity of the aggregates, pointing to a flat-on lamellar or mono-lamellar structure. To understand the origin of the aggregates, spectroscopic ellipsometry showed that samples exposed to the reactor consistently accrued low-volatility contaminants. X-ray photoelectron spectroscopy revealed material derived from polymerization in the contamination, while scanning electron microscopy showed the presence of defect-causing aggregates. We directly linked oligomeric/polymeric contamination with defect formation by showing an increased defect rate when a contaminant polymer was heated alongside the sample. Most importantly, we showed that starting a deposition at a high sample temperature (e.g., 50 °C) before reducing it to the desired setpoint (e.g., 9 °C) unilaterally prevented defects, providing a simple method to prevent defects with minimal impact on operations.

Funder

Office of Naval Research

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3