Electronic structure and magnetothermal property of two-dimensional ferromagnetic NbSe2 monolayer regulated by carrier concentration

Author:

Wu Yan-Ling1ORCID,Wu Hao-Jia1ORCID,Geng Hua-Yun2ORCID,Cheng Yan1ORCID

Affiliation:

1. College of Physics, Institute of Atomic and Molecular Physics, Sichuan University 1 , Chengdu 610064, China

2. National Key Laboratory for Shock Wave and Detonation Physics Research, Institute of Fluid Physics, CAEP 2 , Mianyang 621900, China

Abstract

Investigating high-performance and stable spintronics devices has been a research hotspot in recent years. In this paper, we employed first-principles methods and Monte Carlo (MC) simulations to explore the structure, electronic, and magnetic properties of monolayer NbSe2, as well as its behavior under carrier concentration modulation. The research on the electronic structure reveals that by introducing an appropriate amount of holes, the material can undergo a transition from metal to a half-metal state, achieving 100% high spin polarization. Investigation of magnetic crystalline anisotropy shows that the magnetic crystal anisotropy energy of 1210 μeV in out-of-plane is beneficial to maintain ferromagnetic order at high temperatures. In addition, doping with suitable carriers can effectively enhance or strengthen the ferromagnetic coupling in NbSe2 so that the magnetization easy axis is shifted. This reveals the potential application prospects of NbSe2 in electronically controlled spintronic devices. Analysis of the Fermi surface shows that both holes and electron doping increase the Fermi velocity of the material. The effect of hole doping is particularly significant, indicating its potential application in Fermi velocity engineering. Under the theoretical framework of the extended two-dimensional Ising model, based on MC simulation, the Curie temperature (TC) of NbSe2 is predicted to be 162 K. The effects of carrier concentration and the magnetic field on the magnetic and thermal properties of monolayer NbSe2 are simulated. The results show that appropriately increasing the hole doping concentration and magnetic field is conducive to obtaining ferromagnetic half-metallic materials with TC higher than room temperature, which provides theoretical support for experimental preparation.

Funder

National Natural Science Foundation of China

Publisher

AIP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3