Primary processes of the archetypal model complex azido(porphinato)iron(III) from ultrafast vibrational–electronic spectroscopy

Author:

Flesch Stefan1ORCID,Domenianni Luis I.1ORCID,Vöhringer Peter1ORCID

Affiliation:

1. Clausius-Institut für Physikalische und Theoretische Chemie, Rheinische Friedrich-Wilhelms-Universität , Wegelerstraße 12, 53115 Bonn, Germany

Abstract

Azidoiron complexes serve as valuable photochemical precursors for catalytically active species containing high-valent iron. In bioinorganic chemistry, azido(tetraphenylporphinato)iron(III), i.e., [FeIII(tpp)(N3)] with tpp = 5, 10, 15, 20-tetraphenylporphyrin-21, 23-diido, constitutes the archetypal model system that was used to access for the first time the terminal nitridoiron core, FeV ≡ N, in the biomimetic redox-non-innocent ligand environment. So far, the light-induced dynamics leading to the oxidation of the metal and the release of dinitrogen from the N3-ligand have only been studied for precursors featuring redox-innocent auxiliary ligands that simplify the electronic structure change accompanying the photo-transformation. Here, we monitored the primary events of the above paradigmatic complex, following its optical excitation in the ultraviolet-to-visible spectral range using femtosecond spectroscopy with probing in both the UV–vis and mid-infrared regions. Following ultrafast Soret-excitation at 400 nm, the complex relaxes to the lowest excited sextet state by a first internal conversion in less than 200 fs. The excited state then undergoes vibrational relaxation on a time scale of roughly 2 ps before internally converting yet again to recover the sextet electronic ground state within 19.5 ps. Spectroscopic evidence is obtained neither for a transient occupation of the energetically lowest metal-centered state, 41A1, nor for vibrational relaxation in the ground-state. The primary processes seen here are thus in contrast to those previously derived from ultrafast UV-pump/vis-probe and UV-pump/XANES-probe spectroscopies for the halide congener [FeIII(tpp)(Cl)]. Any photochemical transformation of the complex arises from two-photon-induced dynamics.

Funder

Deutsche Forschungsgemeinschaft

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3