What next: Further implosion space exploration on the path to NIF extended yield capability

Author:

Landen O. L.1ORCID,Nora R. C.1ORCID,Lindl J. D.1ORCID,Kritcher A. L.1ORCID,Haan S. W.1ORCID,Rosen M. D.1ORCID,Pak A.1ORCID,Divol L.1ORCID,Baker K. L.1ORCID,Amendt P. A.1ORCID,Ho D. D.-M.1ORCID,Milovich J. L.1ORCID,Ralph J. E.1ORCID,Clark D. S.1ORCID,Humbird K. D.1ORCID,Hohenberger M.1ORCID,Weber C. R.1ORCID,Tommasini R.1ORCID,Casey D. T.1ORCID,Young C. V.1ORCID,Schlossberg D. J.1ORCID,Maclaren S. A.1ORCID,Dewald E. L.1ORCID,Schmit P. F.1ORCID,Chapman T.1ORCID,Hinkel D. E.1ORCID,Moody J. D.1ORCID,Smalyuk V. A.1ORCID,Hurricane O. A.1ORCID,Town R. P. J.1ORCID

Affiliation:

1. Lawrence Livermore National Laboratory , Livermore, California 94550, USA

Abstract

We present quantitative motivations and assessments of various proposed and ongoing directions to further improving yields and target gain of igniting indirect-drive implosions at the National Ignition Facility (NIF). These include increasing compression and confinement time, improving hohlraum and ablator efficiency, and further increasing peak power and laser energy. 1D hydroscaled simulations, augmented by analytic 1D theory, have been used to project yield improvements for each of these implosion optimization tracks, normalized to the best current performing 4 MJ shot. At current NIF capabilities of 2.2 MJ, 450 TW, we project several paths could reach 15 MJ yield levels. We also expect several key implosion physics questions will be addressed in attempting to reach this yield level. These include demonstrating to what extent lower adiabat designs leading to higher compression will increase gain and efficiency, and whether we can reduce residual kinetic energy and ablator-fuel mix that is probably limiting the current burn-up fraction. For an envisaged NIF upgrade to EL = 3 MJ at fixed 450 TW peak power, scaling capsule size and fuel thicknesses faster than pure hydroscaling should allow for yields that could reach up to 60–80 MJ, depending on the efficiency gains realized in increasing deuterium-tritium fuel thickness, reducing hohlraum losses, and switching to lower Z ablators. The laser-plasma instability and beam transmission scaling in these larger hohlraums is shown to be favorable if the spot size is increased with hohlraum scale.

Funder

Lawrence Livermore National Laboratory

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3