All-fiber-device-coupled compact, transportable ultra-stable laser

Author:

Zhao W.1ORCID,Yang H.1ORCID,Wu H.1,Fu Y.1,Ge J.1,Zhang S.1ORCID

Affiliation:

1. Science and Technology on Metrology and Calibration Laboratory, Beijing Institute of Radio Metrology and Measurement , Beijing 100854, China

Abstract

In response to the demand for operation in non-laboratory environments, there has been a trend toward the development of compact, transportable ultra-stable lasers. This paper reports on this sort of laser system assembled in a cabinet. The whole optical part utilizes fiber-coupled devices to simplify the integration. In addition, spatial beam collimation and alignment into the high-finesse cavity are realized by a five-axis positioner and a focus-adjustable fiber collimator, which significantly relax the alignment and adjustment. A theoretical analysis is performed on how the collimator adjusts the beam profile and coupling efficiency. The support structure of the system is specially designed as well so that it features robustness and transportation without performance degradation. The observed linewidth is 1.4 Hz within a duration of 1 s. After subtracting the linear drift of 70 mHz/s, the fractional frequency instability is better than 4 × 10−15, for the averaging time ranging from 1 to 100 s, which is close to the thermal noise limit of the high-finesse cavity.

Funder

National Key Research and Development Program of China

Publisher

AIP Publishing

Subject

Instrumentation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3