Glassy dynamics of water in TIP4P/Ice aqueous solutions of trehalose in comparison with the bulk phase

Author:

Lupi Laura1ORCID,Gallo Paola1ORCID

Affiliation:

1. Dipartimento di Matematica e Fisica, Università Roma Tre , Via della Vasca Navale 84, 00146 Rome, Italy

Abstract

We perform molecular dynamics simulations of TIP4P/Ice water in solution with trehalose for 3.65 and 18.57 wt. % concentrations and of bulk TIP4P/Ice water at ambient pressure, to characterize the structure and dynamics of water in a sugar aqueous solution in the supercooled region. We find here that TIP4P/Ice water in solution with trehalose molecules follows the Mode Coupling Theory and undergoes a fragile to strong transition up to the highest concentration investigated, similar to the bulk. Moreover, we perform a Mode Coupling Theory test, showing that the Time Temperature Superposition principle holds for both bulk TIP4P/Ice water and for TIP4P/Ice water in the solutions and we calculate the exponents of the theory. The direct comparison of the dynamical results for bulk water and water in the solutions shows upon cooling along the isobar a fastening of water dynamics for lower temperatures, T < 240 K. We found that the counter-intuitive behavior for the low temperature solutions can be explained with the diffusion anomaly of water leading us to the conclusion that the fastening observed below T = 240 K in water dynamics is only fictitious, due to the fact that the density of water molecules in the solutions is higher than the density of the bulk at the same temperature and pressure. This result should be taken into account in experimental investigations which are often carried out at constant pressure.

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3