Influence of atomistic features in plasmon–exciton coupling and charge transfer driven by a single molecule in a metallic nanocavity

Author:

Candelas Bruno123ORCID,Zabala Nerea123ORCID,Koval Peter4ORCID,Babaze Antton12ORCID,Sánchez-Portal Daniel1ORCID,Aizpurua Javier235ORCID

Affiliation:

1. Materials Physics Center, CSIC-UPV/EHU 1 , Manuel de Lardizabal 5, 20018 Donostia, Spain

2. Donostia International Physics Center 2 , Manuel de Lardizabal 4, 20018 Donostia, Spain

3. Department of Electricity and Electronics, FCT-ZTF, UPV/EHU 3 , B° Sarriena s/n, 48940 Leioa, Spain

4. Simune Atomistics S.L. 4 , Tolosa Hiribidea 76, 20018 Donostia, Spain

5. IKERBASQUE, Basque Foundation for Science 5 , 48009 Bilbao, Spain

Abstract

When an organic molecule is placed inside a plasmonic cavity formed by two metallic nanoparticles (MNP) under illumination, the electronic excitations of the molecule couple to the plasmonic electromagnetic modes of the cavity, inducing new hybrid light–matter states called polaritons. Atomistic ab initio methods accurately describe the coupling between MNPs and molecules at the nanometer scale and allow us to analyze how atomistic features influence the interaction. In this work, we study the optical response of a porphine molecule coupled to a silver nanoparticle dimer from first principles, within the linear-response time-dependent density functional theory framework, using the recently developed Python Numeric Atomic Orbitals implementation to compute the optical excitations. The optical spectra show the splitting of the resonances of the plasmonic dimer and the molecule into two distinct polaritons, a characteristic feature of the strong light–matter coupling regime. Our results stress the importance of atomistic features, such as the gap configuration in determining the plasmon–exciton coupling strength and in the emergence of molecule-mediated charge-transfer plasmon (CTP) resonances at lower frequencies. Moreover, we show that the strength of the CTP resonance can be tuned by shifting the alignment of the molecular energy levels with respect to the Fermi level of the MNPs.

Funder

Ministerio de Ciencia e Innovación

Eusko Jaurlaritza

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3