Density-driven exchange flow propagating over an array of densified obstacles

Author:

Wu Ching-Sen1ORCID

Affiliation:

1. Department of Civil Engineering, National Ilan University, Yilan, Taiwan

Abstract

The evolution of bottom-propagating gravity currents with the presence of an array of densified obstacles submerged in a channel is investigated using large-eddy simulations. Our attention is particularly focused on the flow transition of gravity currents over rough surfaces with extra resistance that provokes significant dissipative processes. Two geometric parameters of the roughness elements, namely, the submergence ratio of the obstacle D/ H and the gap-spacing ratio [Formula: see text] between obstacles, govern their kinematic and dynamic effects on the propagation of gravity currents. Physically, D/ H plays a significant role in the control of the current diversion, and [Formula: see text] regulates the flow pathway of gravity current propagation. The integrated measures show that two distinct flow morphologies are identified. For a low submergence ratio ([Formula: see text]), an overtopping flow is formed in which the gravity current travels on the top of the array and undergoes an inconspicuous loss of buoyancy, subject to minimal vertical convective instability interacting with the underlying ambient fluid within the gap regions. For a sufficiently high submergence ratio ([Formula: see text]) and a certain gap spacing ([Formula: see text]), an overrunning flow is formed in which the current rapidly decelerates to a buoyancy–inertia state and then transitions to a drag-dominated state with a gain in excessive drag, in which the front velocity is proportional to [Formula: see text]. However, the simulation results show a turning point toward an increase in the gap spacing as [Formula: see text], that the maximum drag acting on the gravity current is measured when it impinges on the second obstacle of an array, and that the drag coefficient goes up by [Formula: see text], depending on D/ H. The propagation of the gravity current does not show a higher sensitivity to the retarding effect instead. Meanwhile, the promotion of energy conversion occurs because of the gravity current encountering the continuous climbing and plunging flow behavior between two adjacent obstacles in regular motions.

Funder

Ministry of Science and Technology, Taiwan

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3