Effect of the presence of pinned particles on the structural parameters of a liquid and correlation between structure and dynamics at the local level

Author:

Patel Palak12ORCID,Maitra Bhattacharyya Sarika12ORCID

Affiliation:

1. Polymer Science and Engineering Division, CSIR-National Chemical Laboratory 1 , Pune 411008, India

2. Academy of Scientific and Innovative Research (AcSIR) 2 , Ghaziabad 201002, India

Abstract

Pinning particles at the equilibrium configuration of the liquid is expected not to affect the structure and any property that depends on the structure while slowing down the dynamics. This leads to a breakdown of the structure dynamics correlation. Here, we calculate two structural quantities: the pair excess entropy, S2, and the mean field caging potential, the inverse of which is our structural order parameter (SOP). We show that when the pinned particles are treated the same way as the mobile particles, both S2 and SOP of the mobile particles remain the same as those of the unpinned system, and the structure dynamics correlation decreases with an increase in pinning density, “c.” However, when we treat the pinned particles as a different species, even if we consider that the structure does not change, the expression of S2 and SOP changes. The microscopic expressions show that the interaction between a pinned particle and a mobile particle affects S2 and SOP more than the interaction between two mobile particles. We show that a similar effect is also present in the calculation of the excess entropy and is the primary reason for the well-known vanishing of the configurational entropy at high temperatures. We further show that, contrary to the common belief, the pinning process does change the structure. When these two effects are considered, both S2 and SOP decrease with an increase in “c,” and the correlation between the structural parameters and the dynamics continues even for higher values of “c.”

Funder

Science and Engineering Research Board

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3