Digitizing images of electrical-circuit schematics

Author:

Kelly Charles R.1ORCID,Cole Jacqueline M.12ORCID

Affiliation:

1. Department of Physics, Cavendish Laboratory, University of Cambridge 1 , J. J. Thomson Avenue, Cambridge CB3 0HE, United Kingdom

2. ISIS Neutron and Muon Source, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus 2 , Didcot OX11 0QX, United Kingdom

Abstract

Electrical-circuit schematics are a foundational tool in electrical engineering. A method that can automatically digitalize them is desirable since a knowledge base of such schematics could preserve their functional information as well as provide a database that one can mine to predict more operationally efficient electrical circuits using data analytics and machine learning. We present a workflow that contains a novel pattern-recognition methodology and a custom-trained Optical Character Recognition (OCR) model that can digitalize images of electrical-circuit schematics with minimal configuration. The pattern-recognition and OCR stages of the workflow yield 86.4% and 99.6% success rates, respectively. We also present an extendable option toward predictive circuit-design efficiencies, subject to a large database of images being available. Thereby, data gathered from our pattern-recognition workflow are used to draw network graphs, which are in turn employed to form matrix equations that contain the voltages and currents for all nodes in the circuit in terms of component values. These equations could be applied to a database of electrical-circuit schematics to predict new circuit designs or circuit modifications that offer greater operational efficiency. Alternatively, these network graphs could be converted into simulation programs with integrated circuit emphasis netlists to afford more accurate and computationally automated simulations.

Funder

Royal Academy of Engineering

Engineering and Physical Sciences Research Council

ISIS Neutron and Muon Source

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3