Size dependence of transport coefficients of thin and long asphaltene molecules as determined using a mode-coupling theory approach

Author:

Wong Chi Pui Jeremy1ORCID,Choi Phillip1ORCID

Affiliation:

1. Faculty of Engineering and Applied Science, University of Regina , Regina, Saskatchewan S4S 0A2, Canada

Abstract

Rotational diffusion coefficients (Dr) and viscosities (η) of rigid rod molecules consisting of N beads were first revisited for the situation at low density. Starting from this, the transport coefficients at high density condition were expressed in terms of different density pair correlation functions, such as intermolecular radial distribution function and structure factor. This was attained using a mode-coupling theory approach to approximate the intermolecular force–force correlation function, and thus the friction coefficient. As these density pair correlation functions are dependent on N, they determine how “entangled” the rigid rod molecules are, and therefore reproducing the crossover in the log –log plot of transport coefficients with N. It was found that there are crossovers in transport coefficients from Dr∼N−2.3 and η∼N2.3 at low N to Dr∼N−6.5 and η∼N6.5 at high N. The strength of N dependence is mainly determined by the competition between available free space and the compressibility of the system.

Funder

Imperial Oil Limited

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3