Application of running fringes technique for measurement of photocarriers transport parameters in perovskite films

Author:

Korneev N.1ORCID,Vega Salgado A. K.1ORCID,Valencia Yescas R.1ORCID,Cuatecatl M.1,Rodriguez P.1ORCID,Mansurova S.1ORCID,Seidenspinner A.2ORCID,Meerholz K.2ORCID

Affiliation:

1. National Institute of Astrophysics, Optics and Electronics (INAOE) 1 , Puebla, Mexico

2. Department of Chemistry, University of Cologne 2 , Greinstr. 4-6, 50939 Cologne, Germany

Abstract

This study aims to contribute to the development of theoretical and experimental tools for characterizing the transport properties of perovskite semiconductors. In the context of existing transport characterization methods for perovskites, there is a need for techniques that can accurately assess the critical transport parameters, such as diffusion lengths, given the specific challenges posed, such as their inherent instabilities. The novel methodology employed involves the development of a theoretical model to describe the running fringes-induced photo-electromotive force (RF photo-EMF) effect in bipolar photoconductors with a rather general type of photoconductivity relaxation behaviors for both carriers. This model is founded on the theory of photoinduced space charge grating formation in semiconductors. Subsequently, RF photo-EMF experiments were conducted on methylammonium lead iodide (CH3NH3PbI3 or MAPI) polycrystalline films of varying grain sizes. By utilizing the RF photo-EMF technique, we successfully elucidated crucial transport and recombination characteristics, notably the ambipolar diffusion length and relaxation times of the charge carriers. Significantly, the developed theoretical model exhibited a remarkable agreement with the experimental results, highlighting its ability in explaining and predicting the behavior of charge carriers in perovskite semiconductors. The results of this study make a substantial contribution to the field of perovskite semiconductors by offering a novel theoretical and experimental approach to characterization of perovskites’ transport properties.

Publisher

AIP Publishing

Subject

General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3