Affiliation:
1. Zhejiang University of Water Resources and Electric Power 1 , Hangzhou 310018, China
2. State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China 2 , Hefei 230026, China
Abstract
Mixed valence manganites are potential functional materials due to their unique electromagnetic properties. In this work, half-doped ceramics with the perovskite structure Sm0.5Ca0.5MnO3 polycrystalline samples are synthesized by the solid-state reaction method in open air at different final sintering temperatures. Structures and particle sizes are studied by x-ray diffraction and scanning electron microscopy, respectively. Positron annihilation spectroscopy and density-functional theory calculations are used to characterize the intrinsic vacancies in the bulk. Thereafter, the effect of vacancies on the magnetic and magnetoresistance (MR) properties is investigated. We find that Mn monovacancies (VMn) exist in the bulk among all the samples, and the concentration of VMn is different. We suggest a possible defect model that can be well applied to explain the phenomena of their electromagnetic properties. The transition temperature of the charge-order state (TCO) and ferromagnetic and anti-ferromagnetic (TN) are most likely related to the concentration of VMn and the particle sizes or pore sizes, respectively. The glass spin state transition temperature seems to be independent of the defect concentration and type. The metal conductive behavior does not appear in a high magnetic field and at low temperatures, which may be caused by the presence of a high concentration of VMn in the bulk and oxygen-related defects in the boundary, and the double exchange interaction is suppressed. At temperatures below TN and under a weak magnetic field, the MR is related to the total defect concentration. In addition, the high concentration of VMn is unfavorable for obtaining a high MR value.
Funder
National Key Research and Development Program of China
National Natural Science Foundation of China
Subject
General Physics and Astronomy
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献