Instrument with an ultra-wide dynamic detection range for the optical counting and sizing of individual particles in suspensions

Author:

Hussels Martin1ORCID,Lichtenfeld Heinz2,Woehlecke Holger23ORCID,Wollik Elia2ORCID,Lerche Dietmar23

Affiliation:

1. Physikalisch-Technische Bundesanstalt 1 , Abbestr. 2-12, 10587 Berlin, Germany

2. Dr. Lerche KG 2 , Justus-von-Liebig-Straße 3, 12489 Berlin, Germany

3. LUM GmbH 3 , Justus-von-Liebig-Straße 3, 12489 Berlin, Germany

Abstract

The characterization of dispersions, suspensions, and emulsions is important in a wide range of scientific applications and industries. Samples can consist of different materials and a wide range of particle sizes and concentrations. A single particle sizing and counting instrument with a dynamic detection range of ≥6 decades has been developed to detect single nano- and microparticles in aqueous suspensions based on light scattering measured in two directions. Hydrodynamic focusing is employed for particle separation and to provide stable conditions for light scattering detection. This gives the advantage of size resolution in the nm range, allowing, e.g., number based size distributions, classification of nanomaterials, determination of particle agglomerates, developments for dispersion stability analysis, or cutoff of filter media. In addition, concentration determination is based on sample volume measurement with <20 nl measurement uncertainty. We present results of particle detection in a size range from approximately above 40 nm for gold nanoparticles to 8 μm for polystyrene particles using a prototyped instrument of the LUMiSpoc® series produced by LUM GmbH. The data obtained demonstrate the advantages of single-particle detection, particularly for characterizing polydisperse systems, such as precise particle sizing in the nanometer range through light scattering intensity based on Mie scattering theory. In addition, we present particle concentration data based on the integrated measurement of sample volume, which allows particle concentration to be determined with an uncertainty of 2.5% (95% confidence interval). To achieve such small uncertainties, dilution series measurements must be used to correct for coincidence losses and particle adhesion.

Funder

Bundesministerium für Wirtschaft und Energie

Publisher

AIP Publishing

Reference37 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3