Affiliation:
1. College of Integrated Circuit Science and Engineering, Nanjing University of Posts and Telecommunications 1 , Nanjing 210023, China
2. College of Electronic and Optical Engineering, Nanjing University of Posts and Telecommunications 2 , Nanjing 210023, China
Abstract
Magnesium-ion batteries (MIBs) are expected to be an alternative to lithium-ion batteries due to the lower cost and immanent safety of Mg. Presently, the major difficulty in breaking through MIBs technology is the lack of desirable anode materials. Based on first-principles calculations, we predict a two-dimensional material named the Be2B monolayer as an excellent anode material. The structural stability is confirmed by superior cohesive energy, positive phonon modes, excellent thermal stability, and strong mechanical stability. Afterward, we explore the performance of the Be2B monolayer as the anode material for MIBs. It exhibits stable Mg atom adsorption with an energy of −0.7 eV, low diffusion barrier (0.1 eV), ultra-high specific capacity (7436 mA h g−1), tiny lattice expansion (0.3%), and low average open-circuit voltage (0.29 V). Thereby, the above-mentioned intriguing findings suggest that the Be2B monolayer can act as a promising anode material for high performance MIBs.
Funder
National Natural Science Foundation of China
Subject
Physics and Astronomy (miscellaneous)
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献