Phase-space evolution of quasiparticle excitations in electron gas

Author:

Akbari-Moghanjoughi M.1ORCID

Affiliation:

1. Faculty of Sciences, Department of Physics, Azarbaijan Shahid Madani University , 51745-406 Tabriz, Iran

Abstract

In this research, we use the dual lengthscale quasiparticle model for collective quantum excitations in electron gas to study the time evolution of the Wigner function. The linearized time-dependent Schrödinger–Poisson system for quasiparticles is used to study the dynamics of initial known stationary and damped solutions in an electron gas with arbitrary degree of degeneracy. The self-consistent potential in the Schrödinger–Poisson model is treated in a quite different manner in this analysis due to the effective coupling of the electrostatic field to the electron density, which leads to a modified Wigner function. It is shown that the modified Wigner function in the absence of external potential evolves similar to the system of free particles, a feature of collective quantum excitations which is quite analogous to freely evolving classical system of particles in the center of mass frame in the absence of external forces. The time evolution of the modified Wigner function reveals a grinding effect on large-amplitude density structures present at initial states, which is a characteristic feature of the Landau damping in plasmas. It is further shown that linear phase-space dynamics of spill-out electrons (damped quasiparticles) can be described similar to free quasiparticles with imaginary momentum. The later predicts the surface electron tunneling via the collective excitations of spill-out electrons at the half-space boundary, which is closely related to the Heisenberg's uncertainty principle. Current research can have applications in plasmonics and related fields.

Publisher

AIP Publishing

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3