Assessing OPLS-based force fields for investigating the characteristics of imidazolium-based dicationic ionic liquids: A comparative study with AIMD simulations and experimental findings

Author:

Memar Zahra Ostadsharif1ORCID,Moosavi Majid1ORCID

Affiliation:

1. Department of Chemistry, University of Isfahan , Isfahan 81746-73441, Iran

Abstract

In this study, we extended the optimized potentials for liquid simulation-ionic-liquid virtual site (OPLS-VSIL) force field (FF) to imidazolium-based dicationic ionic liquids (DILs) and evaluated the ability of different OPLS-based FFs (i.e., OPLS-2009IL, 0.8*OPLS-2009IL, and OPLS-VSIL) in predicting different properties of the studied DIL by comparing their results with ab initio molecular dynamics (AIMD) simulation and experimental results. To achieve this purpose, MD simulations with three different OPLS-based FFs as well as AIMD simulation were performed for [C3(mim)2][NTF2]2 DIL and its structural, dynamical, vibrational, and volumetric properties were analyzed. Structural properties of the studied DIL, i.e., radial distribution functions (RDFs), structure factor, and hydrogen-bond network, showed that compared to 0.8*OPLS-2009IL FF, there is a much better agreement between the results of both OPLS-2009IL and OPLS-VSIL FFs with the AIMD simulation. On the other hand, the results of dynamical properties, such as mean square displacements, van Hove correlation functions as well as hydrogen bond, ion pair, and ion cage dynamics, depicted that in both 0.8*OPLS-2009IL and OPLS-VSIL FFs, the dynamics of the system is almost similar, and compared to OPLS-2009IL FF, they have better agreements with experimental results where they exist. So, it can be seen that although reducing the total charge of studied DIL by 20% leads to an increase in the dynamics of the system, the type distribution of partial charges on each atom does not significantly affect the system’s dynamics. The calculated infrared (IR) and power spectra showed that the vibrational features of studied DIL in three OPLS-based FFs are mostly the same and reducing total charge and different type distribution of partial charges have no significant effect on the studied system. Furthermore, in volumetric properties, OPLS-VSIL FF shows somehow better agreement with experimental results. Overall, the evaluation of different structural, dynamical, vibrational, and volumetric properties of [C3(mim)2][NTF2]2 DIL shows that the OPLS-VSIL FF may be the best choice among the different studied OPLS FFs.

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3