Magnetic microcalorimeter with paramagnetic temperature sensors and integrated dc-SQUID readout for high-resolution x-ray emission spectroscopy

Author:

Krantz Matthäus1ORCID,Toschi Francesco23ORCID,Maier Benedikt4ORCID,Heine Greta4,Enss Christian35ORCID,Kempf Sebastian36ORCID

Affiliation:

1. Kirchhoff-Institute for Physics, Heidelberg University 1 , Im Neuenheimer Feld 227, 69120 Heidelberg, Germany

2. Institute for Astroparticle Physics (IAP), Karlsruhe Institute of Technology (KIT) 2 , Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany

3. Kirchhoff-Institute for Physics (KIP), Heidelberg University 3 , Im Neuenheimer Feld 227, 69120 Heidelberg, Germany

4. Institute of Experimental Particle Physics (ETP), Karlsruhe Institute of Technology (KIT) 4 , Wolfgang-Gaede-Str. 1, 76131 Karlsruhe, Germany

5. Institute for Data Processing and Electronics (IPE), Karlsruhe Institute of Technology (KIT) 5 , Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany

6. Institute of Micro- and Nanoelectronic Systems, Karlsruhe Institute of Technology 6 , Hertzstraße 16, 76187 Karlsruhe, Germany

Abstract

We present two variants of a magnetic microcalorimeter with paramagnetic temperature sensors and integrated dc-superconducting quantum interference device readout for high-resolution x-ray emission spectroscopy. Each variant employs two overhanging gold absorbers with a sensitive area of 150 × 150 μm2 and a thickness of 3 μm, thus providing a thickness related quantum efficiency of >98% for photons up to 5 keV and >50% for photons up to 10 keV. The first variant operated nominally but suffered from Joule power dissipation of the Josephson junction shunt resistors, athermal phonon loss, and slew rate limitations of the overall setup. Overall, it only achieved an energy resolution of ΔEFWHM=8.9 eV for 5.9 keV photons. In the second variant, we introduced an innovative tetrapod absorber geometry as well as a membrane technique for diverting dissipated heat away from the temperature sensors. When all mitigations are applied optimally, the second variant achieves an energy resolution of ΔEFWHM=1.25(18) eV for 5.9 keV photons and hence provides the present best energy resolving power E/ΔEFWHM among all existing energy-dispersive detectors for soft and tender x-rays.

Funder

Bundesministerium für Bildung und Forschung

Alexander von Humboldt-Stiftung

Deutsche Forschungsgemeinschaft

Publisher

AIP Publishing

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3