Affiliation:
1. Computational Sciences and Engineering Division, Oak Ridge National Laboratory , Oak Ridge, Tennessee 37831, USA
Abstract
We report the in-plane electron transport in the MXenes (i.e., within the MXene layers) as a function of composition using the density-functional tight-binding method, in conjunction with the non-equilibrium Green’s functions technique. Our study reveals that all MXene compositions have a linear relationship between current and voltage at lower potentials, indicating their metallic character. However, the magnitude of the current at a given voltage (conductivity) has different trends among different compositions. For example, MXenes without any surface terminations (Ti3C2) exhibit higher conductivity compared to MXenes with surface functionalization. Among the MXenes with –O and –OH termination, those with –O surface termination have lower conductivity than the ones with –OH surface terminations. Interestingly, conductivity changes with the ratio of –O and –OH on the MXene surface. Our calculated I–V curves and their conductivities correlate well with transmission functions and the electronic density of states around the Fermi level. The surface composition-dependent conductivity of the MXenes provides a path to tune the in-plane conductivity for enhanced pseudocapacitive performance.
Funder
U.S. Department of Energy
Subject
Physical and Theoretical Chemistry,General Physics and Astronomy
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献