The vitality of very-large-scale motions upstream of an overflow structure

Author:

Yan ZiliORCID,Zhu DejunORCID,Li DanxunORCID

Abstract

The flows upstream of a run-of-river dam, commonly utilized as an overflow structure on rivers, are complex due to heterogeneities in both streamwise and spanwise directions. In particular, very-large-scale motions (VLSMs) are greatly influenced by the overflow structure, yet relevant understandings remain limited. Reported as novel coherent structures in turbulent flows, VLSMs are recognized with the scale up to several and tens of the outer-scaled unit, and they contribute significantly to turbulent transport and mixing. To fill the gap, experiments with particle image velocimetry were conducted to investigate the vitality of VLSMs upstream of a model dam. Measurements were designed to cover broad hydraulic scope with flow heterogeneities. The results reveal that VLSMs in the present flow scenario show noticeable characteristics in both streamwise and spanwise directions. Compared to those in uniform flows, the VLSMs in present flows are found to be more energetic and stress-active.

Funder

National Natural Science Foundation of China

Publisher

AIP Publishing

Subject

General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3