Electric double layer contribution to sum frequency generation signal from Au electrode

Author:

Song Qian-Tong1ORCID,Huang-Fu Zhi-Chao1ORCID,Liu XiaoLin1ORCID,Wang Yue1ORCID,He YuHan1ORCID,Yu ZhiYuan1,Wang ChangYi1ORCID,Sun Shi-Gang1ORCID,Wang ZhaoHui1ORCID

Affiliation:

1. College of Chemistry and Chemical Engineering, Xiamen University , Xiamen 361005, China

Abstract

Understanding the electric double layer (EDL) of the metal electrode–electrolyte interface is essential to electrochemistry and relevant disciplines. In this study, potential-dependent electrode Sum Frequency Generation (SFG) intensities of polycrystalline gold electrodes in HClO4 and H2SO4 electrolytes were thoroughly analyzed. The potential of zero charges (PZC) of the electrodes was −0.06 and 0.38 V in HClO4 and H2SO4, respectively, determined from differential capacity curves. Without specific adsorption, the total SFG intensity was dominated by the contribution from the Au surface and increased similar to that of the visible (VIS) wavelength scanning, which pushed the SFG process closer to the double resonant condition in HClO4. However, the EDL contributed about 30% SFG signal with specific adsorption in H2SO4. Below PZC, the total SFG intensity was dominated by the Au surface contribution and increased with potential at a similar slope in these two electrolytes. Around PZC, as the EDL structure became less ordered and the electric field changed direction, there would be no EDL SFG contribution. Above PZC, the total SFG intensity increased much more rapidly with potential in H2SO4 than in HClO4, which suggested that the EDL SFG contribution kept increasing with more specific adsorbed surface ions from H2SO4.

Funder

National Natural Science Foundation of China

Ministry of Science and Technology, Government of the People’s Republic of Bangladesh

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3