Affiliation:
1. Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
2. Department of Mathematics and Statistics, Boston University, Boston, Massachusetts 02215, USA
Abstract
For the Rayleigh–Taylor unstable arrangement of a viscous fluid sphere embedded in a finite viscous fluid spherical shell with a rigid boundary and a radially directed acceleration, a dispersion relation is developed from a linear stability analysis using the method of normal modes. [Formula: see text] is the radially directed acceleration at the interface. ρ i denotes the density, μ i is the viscosity, and R i is the radius, where i = 1 is the inner sphere and i = 2 is the outer sphere. The dispersion relation is a function of the following dimensionless variables: viscosity ratio [Formula: see text], density ratio [Formula: see text], spherical harmonic mode n, [Formula: see text], [Formula: see text], and the dimensionless growth rate [Formula: see text], where σ is the exponential growth rate. We show that the boundedness provided by the outer spherical shell has a strong influence on the instability behavior, which is reflected not only in the modulation of the growth rate but also in the selection of the most unstable modes that are physically possible. This outer boundary effect is quantified by the relative magnitude of the radius ratio H. We find that when H is close to unity, lower order harmonics are excluded from becoming the most unstable within a vast region of the parameter space. In other words, the effect of H has precedence over the other controlling parameters d, B, and a wide range of s in establishing what the lowest most unstable mode can be. When H ∼ 1, low order harmonics can become the most unstable only for s ≫ 1. However, in the limit when s → ∞, we show that the most unstable mode is n = 1 and derive the dispersion relation in this limit. The exclusion of most unstable low order harmonics caused by a finite outer boundary is not realized when the outer boundary extends beyond a certain threshold length-scale in which case all modes are equally possible depending on the value of B.
Funder
National Science Foundation
Subject
General Physics and Astronomy
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献