Characteristic analysis and blind area prediction of aeromagnetic scalar gradient detection method

Author:

Chang Ming1ORCID,Xu Lei2ORCID,Pang Xin3,Zhang Jiawei1ORCID,Li Houpu4,Lin Mingzhen5

Affiliation:

1. College of Weapons Engineering, Naval University of Engineering, Wuhan 430033, China

2. 92859 Troops, Tianjin 300061, China

3. Unit 92840 of the PLA, Dalian 116000, China

4. College of Electrical Engineering, Naval University of Engineering, Wuhan 430033, China

5. College of Political Theories, Naval University of Engineering, Wuhan 430033, China

Abstract

To analyze the characteristics of the aeromagnetic scalar gradient detection method, a uniformly magnetized ellipsoid is used to simulate an unexploded ordnance, and a magnetic field detection model is established in the International Geomagnetic Reference Field based on rotation matrices. Furthermore, the spatial distribution of the target’s magnetic field is simulated. The results indicate that the scalar gradient detection curve is closely related to the unmanned aerial vehicle (UAV) heading, geomagnetic direction, and target attitude. According to the measured data, the aeromagnetic detection system exhibits differences in the detection of different headings, indicating that some “blind areas” exist in the scalar gradient magnetic detection method. The experimental measurement by a quadrotor UAV equipped with two optical pump magnetometers verifies that the scalar gradient detection method can effectively eliminate the geomagnetic field as well as the interferences of the UAV itself. Furthermore, the angular relationship between the target magnetic field contour distribution and the heading is found to be the main reason that the scalar gradient detection system enters the “blind detection area.” Therefore, a flight strategy of “positive direction + orthogonal grid” is proposed. This method effectively reduces the missed detection rate of scalar gradient detection and provides strategic guidance for the detection path of aeromagnetic scalar gradient system.

Funder

National Natural Science Foundation of China

National Science Fund for Distinguished Young Scholars

Publisher

AIP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3