Descripting e + and Weyl fermion as beam/current for pump/injection semiconductor devices

Author:

Abbas Arwa Saud1ORCID

Affiliation:

1. King Abdulaziz City for Science and Technology (KACST) , Riyadh 11442-6086, Kingdom of Saudi Arabia

Abstract

Based on the demand for an improvement in various corpuscle types of current injection, the objective of this technique is to provide a new concept of carrier generators for optoelectronic pump and injection devices. This investigation is conducted to improve current injection by using a particle other than the electron. The idea was conceived from condensed matter physics for a technique to implement positron for carrier transport in semiconductors with the source based on localized emissions. A radioactive source such as 22Na is incident on a tungsten vane moderator, thus having positive electrons flowing and tunneling as well as a laser-driven high-quality positron into semiconductor-based devices. In addition, tantalum arsenide (TaAs) hosting Weyl particles has been discovered to hold significant potential for cutting-edge technological uses. Injection of different carriers and their behavior in semiconductors will lead to the emergence of solid state optoelectronics with different carrier injections that possesses a high energy (100–500 keV) and the possibility of maximum energy that is approximately several tens of megaelectron volts. Significantly, these various carrier sources have a larger range of operational settings and output characteristics due to their various underlying emission principles, thus obtaining a greater kinetic energy for a positron. The transformation to Weyl fermions carries electric charge via a device far more quickly than ordinary electrons, therefore unlocking the potential of new materials with unusual transport properties.

Publisher

AIP Publishing

Reference86 articles.

1. The spin torus energy model and electricity;Open J. Appl. Sci.,2019

2. Distinguishing between stars and galaxies composed of matter and antimatter using photon helicity detection;Phys. Rev. Lett.,1977

3. Observational tests of antimatter cosmologies;Annu. Rev. Astron. Astrophys.,1976

4. N. Zafar , “An experimental study of thin foil positron moderators and positronium intermediates interactions in gases,” PhD thesis, Department of Physics and Astronomy, University CollegeLondon, 1990.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3