Infrared spectroscopy of ions and ionic clusters upon ionization of ethane in helium droplets

Author:

Erukala Swetha1ORCID,Feinberg Alexandra J.1ORCID,Moon Cheol Joo12ORCID,Choi Myong Yong3ORCID,Vilesov Andrey F.14ORCID

Affiliation:

1. Department of Chemistry, University of Southern California, Los Angeles, California 90089, USA

2. Research Institute for Green Energy Convergence Technology, Gyeongsang National University, Jinju 52828, Republic of Korea

3. Core‐Facility Center for Photochemistry and Nanomaterials, Department of Chemistry (BK21 FOUR), Research Institute of Natural Sciences, Gyeongsang National University, Jinju, Republic of Korea

4. Department of Physics and Astronomy, University of Southern California, Los Angeles, California 90089, USA

Abstract

Helium droplets are unique hosts for isolating diverse molecular ions for infrared spectroscopic experiments. Recently, it was found that electron impact ionization of ethylene clusters embedded in helium droplets produces diverse carbocations containing three and four carbon atoms, indicating effective ion–molecule reactions. In this work, similar experiments are reported but with the saturated hydrocarbon precursor of ethane. In distinction to ethylene, no characteristic bands of larger covalently bound carbocations were found, indicating inefficient ion–molecule reactions. Instead, the ionization in helium droplets leads to formation of weaker bound dimers, such as (C2H6)(C2H4)+, (C2H6)(C2H5)+, and (C2H6)(C2H6)+, as well as larger clusters containing several ethane molecules attached to C2H4+, C2H5+, and C2H6+ ionic cores. The spectra of larger clusters resemble those for neutral, neat ethane clusters. This work shows the utility of the helium droplets to study small ionic clusters at ultra-low temperatures.

Funder

Directorate for Mathematical and Physical Sciences

Korea Evaluation Institute of Industrial Technology

Korea Basic Science Institute

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3