Energy storage and dielectric properties in PbZrO3/PbZrTiO3 antiferroelectric/ferroelectric bilayer bulk structure using Landau theory

Author:

Alrub Ahmad Musleh1ORCID,Anbar Abd Aljabar1ORCID,Ibrahim Abdel-Baset M. A.2ORCID

Affiliation:

1. Department of Physics, Al-Hussein Bin Talal University 1 , Ma’an 71111, Jordan

2. Faculty of Applied Sciences, Universiti Teknologi MARA (UiTM) 2 , 40450 Shah Alam, Selangor, Malaysia

Abstract

Employing Landau theory and the Landau–Khalatnikov (L–K) equation of motion, we investigate the phase transitions in individual layers of antiferroelectric lead zirconate (PbZrO3), ferroelectric lead zirconate titanate (PbZrTiO3), and an antiferroelectric/ferroelectric PbZrO3/PbZr(0.21)Ti(0.79)O3 bilayer bulk structure. We examine the dielectric hysteresis loop behavior of the three systems, with a specific focus on the PbZrO3/PbZr(0.21)Ti(0.79)O3 bilayer under different stabilities of the PbZrO3 layer. In addition, we explore cases where the coercive field of the bilayer structure is lower than that of the PbZrTiO3 individual layer. The recoverable electric energy for the PbZrO3/PbZr(0.21)Ti(0.79)O3 bilayer increases significantly to 118 J/cm3 at an applied field of 7.5 × 108 V/m at 20 °C. In comparison, the PbZr(0.21)Ti(0.79)O3 layer reaches 71.8 J/cm3 under the same field and temperature conditions. This is much higher than those predicted experimentally by previous studies on thin film single and bilayer structures (15.6 and 28.2 J/Cm3 respectively), indicating that the antiferroelectric/ferroelectric PbZrO3/PbZr(0.21)Ti(0.79)O3 bilayer bulk structure could be used to target specific large-scale, long-term energy storage applications. Upon increasing the value of the coupling coefficient, the transition temperatures of the PbZrO3 layer and the PbZrO3/PbZr(0.21)Ti(0.79)O3 bilayer are increased up to the transition temperature of the PbZr(0.21)Ti(0.79)O3 individual layer (450 °C). This increment in the transition temperature in the bilayer system contributes to its stability in storing energy at higher temperatures. Furthermore, the recoverable energy density of the PbZrO3/PbZr(0.21)Ti(0.79)O3 bilayer increases further with temperature from 20 to 440 °C correlated with the rise in the difference between the spontaneous and the remanent polarizations (Ps − Pr). The significant stored energy observed over a wide temperature range highlights the promise of this bilayer structure for creating high-power capacitors where stability at different temperatures is crucial and possesses greater energy storage capacity.

Funder

Al-Hussein Bin Talal University

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3