Typical at glance but interesting when analyzed in detail: A story of Tris hydration

Author:

Agieienko V.12ORCID,Neklyudov V.3,Buchner R.4ORCID

Affiliation:

1. Laboratory of Membrane and Catalytic Processes, Nanotechnology and Biotechnology Department, Nizhny Novgorod State Technical University n.a. R.E. Alekseev, 24 Minina Str., 603950 Nizhny Novgorod, Russian Federation

2. Laboratory of Engineering Chemistry, Research Institute for Chemistry, Lobachevsky State University of Nizhny Novgorod, 23 Gagarina Av., 603022 Nizhny Novgorod, Russian Federation

3. Wolfson Department of Chemical Engineering, Technion-IIT, Haifa 32000, Israel

4. Institut für Physikalische und Theoretische Chemie, Universität Regensburg, Universitätsstraße 31, D-93040 Regensburg, Germany

Abstract

This paper provides results of dielectric relaxation (DR) spectroscopy of aqueous solutions of tris(hydroxymethyl)aminomethane (Tris) covering frequencies of 0.05 ≤ ν/GHz [Formula: see text]. The DR spectra can be well fit by a sum of Cole–Cole relaxation, assigned to the solute, and 2 Debye modes already observed for neat water. Analysis of the amplitudes reveals that Tris is hydrated by 7 H2Os up to its solubility limit. However, the rather high effective solute dipole moment of ≈12 D suggests that H2O dipoles in contact with Tris should reorient independently from it. Accordingly, an alternative description of the DR spectra with a superposition of 4 Debyerelaxations was attempted. In this model, the slowest mode at ∼4 GHz arises from solute reorientation and that at ∼8 GHz was assigned to dynamically retarded hydration water, whereas relaxations at ∼18 and ∼500 GHz are again those of (rather unperturbed) bulk water. Analysis of the solvent-related modes shows that Tris indeed slows down 7–8 H2O molecules. However, the solute–solvent interaction strength is rather weak, excluding the rotation of an alleged Tris-(7–8) H2O cluster as an entity. The now derived effective dipole moment of (6.3 ± 0.5) D for the bare Tris molecule allows speculations on its conformation. With the help of computational methods, we suggest that Tris dissolved in water most likely possesses an intramolecular H-bond between the nitrogen and hydrogen atoms of amino and hydroxyl groups, respectively. In addition, computational results indicate that the seven hydration H2Os found by DR bind directly to the Tris OH groups.

Funder

Russian Science Foundation

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3