New curved boundary scheme in lattice Boltzmann framework for simulation of dissolution through nonlinear heterogeneous reactions in general form

Author:

Izadi Ahad1ORCID,Mohebbi Ali1ORCID,Feili Monfared Amir Ehsan2ORCID

Affiliation:

1. Department of Chemical Engineering, Faculty of Engineering, Shahid Bahonar University of Kerman 1 , Kerman, Iran

2. Department of Chemical Engineering, Graduate University of Advanced Technology 2 , Kerman, Iran

Abstract

Nonlinear heterogeneous reactions are important for simulating dissolution as they involve reactant adsorption, reaction, and product desorption, leading to nonlinear behavior. This study proposes a new curved reaction boundary condition in general form in the lattice Boltzmann framework. This method calculates the unknown distribution functions and the interface concentration using extrapolated distribution functions on actual interface position. Various analytical benchmarks were used to compare this method's accuracy with two available schemes, including Kashani et al. and Huber et al. methods. According to the results, in the simulation of reactant transport on straight and curved surfaces with and without dissolution, errors obtained by the proposed method did not exceed 1.7% in different conditions, while errors of the two other methods were up to 50%. The convergence rate of different methods was determined, and based on the results, the convergence rate of the proposed method was second-order, while the corresponding values for the two other methods were only first-order. The results of different root-finding methods in the proposed method including Bisection, Newton-Raphson, and linear approximation were compared to determine the interface concentration. The results showed that Bisection errors did not exceed 1%. At the same time, using Newton-Raphson and linear approximation led to errors of 12.9% and 25.3%, respectively. The effect of reaction orders on an obstacle dissolved under reactive flows in a channel was investigated. According to the results, in each Damköhler number, increasing the reaction order decreased the dissolution rate; however, increasing the Damköhler number significantly restricted the effect of orders.

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3