Third density and acoustic virial coefficients of helium isotopologues from ab initio calculations

Author:

Binosi Daniele1ORCID,Garberoglio Giovanni1ORCID,Harvey Allan H.2ORCID

Affiliation:

1. European Centre for Theoretical Studies in Nuclear Physics and Related Areas (FBK-ECT*) 1 , Trento I-38123, Italy

2. Applied Chemicals and Materials Division, National Institute of Standards and Technology 2 , Boulder, Colorado 80305, USA

Abstract

Improved two-body and three-body potentials for helium have been used to calculate from first principles the third density and acoustic virial coefficients for both 4He and 3He. For the third density virial coefficient C(T), uncertainties have been reduced by a factor of 4–5 compared to the previous state of the art; the accuracy of first-principles C(T) now exceeds that of the best experiments by more than two orders of magnitude. The range of calculations has been extended to temperatures as low as 0.5 K. For the third acoustic virial coefficient γa(T), we applied the Schlessinger point method, which can calculate γa and its uncertainty based on the C(T) data, overcoming some limitations of direct path-integral calculation. The resulting γa are calculated at temperatures down to 0.5 K; they are consistent with available experimental data but have much smaller uncertainties. The first-principles data presented here will enable improvement of primary temperature and pressure metrology based on gas properties.

Funder

European Metrology Program for Innovation and Research

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3