Affiliation:
1. Department of Electronics, Nagoya University 1 , Nagoya, Aichi 464-8601, Japan
2. Mitsubishi Chemical Corporation 2 , Ushiku, Ibaraki 300-1295, Japan
Abstract
The electrical properties of semi-insulating GaN substrates doped with iron (Fe), carbon (C), or manganese (Mn) grown by hydride vapor phase epitaxy are presented. Hall effect measurements were performed at temperatures ranging from 300 to 800 K. At all of the investigated temperatures, the Mn-doped samples exhibited the highest resistivity. The Fe-doped samples showed n-type conduction, whereas the C-doped samples and the Mn-doped sample with a Mn concentration of 1 × 1019 cm−3 showed p-type conduction. A detailed analysis of the temperature dependence of the carrier concentration showed that all of the impurities formed acceptor levels at EC −(0.59–0.61) eV for Fe, at EV +(0.90–1.07) eV for C, and at EV +1.55 eV for Mn. The Mn-doped sample with a Mn concentration of 8 × 1017 cm−3 showed a negative Hall coefficient (suggesting n-type conduction) at high temperatures, contradicting the formation of acceptor levels by Mn. We successfully explained the negative value by considering the conduction of both holes and electrons with different mobilities. On the basis of the results, we calculated the relationship between the resistivity and doping concentration for each dopant. The calculations indicated that the highest resistivity can be realized in Mn-doped GaN with an optimized doping concentration (depending on the residual donor concentration). All of the dopants can effectively realize high resistivity at room temperature. Mn is an effective dopant for attaining high resistivity, especially at high temperatures (e.g., 800 K).
Subject
General Physics and Astronomy
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献