Stress–stress correlations reveal force chains in gels

Author:

Vinutha H. A.1ORCID,Diaz Ruiz Fabiola Doraly1ORCID,Mao Xiaoming2ORCID,Chakraborty Bulbul3ORCID,Del Gado Emanuela1ORCID

Affiliation:

1. Department of Physics, Institute for Soft Matter Synthesis and Metrology, Georgetown University 1 , Washington, DC 20057, USA

2. Department of Physics, University of Michigan 2 , Ann Arbor, Michigan 48109, USA

3. Martin Fisher School of Physics, Brandeis University 3 , Waltham, Massachusetts 02453, USA

Abstract

We investigate the spatial correlations of microscopic stresses in soft particulate gels using 2D and 3D numerical simulations. We use a recently developed theoretical framework predicting the analytical form of stress–stress correlations in amorphous assemblies of athermal grains that acquire rigidity under an external load. These correlations exhibit a pinch-point singularity in Fourier space. This leads to long-range correlations and strong anisotropy in real space, which are at the origin of force-chains in granular solids. Our analysis of the model particulate gels at low particle volume fractions demonstrates that stress–stress correlations in these soft materials have characteristics very similar to those in granular solids and can be used to identify force chains. We show that the stress–stress correlations can distinguish floppy from rigid gel networks and that the intensity patterns reflect changes in shear moduli and network topology, due to the emergence of rigid structures during solidification.

Funder

National Science Foundation

American Chemical Society Petroleum Research Fund

Clare Boothe Luce Program

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

Reference42 articles.

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Schramm-Loewner Evolution in 2D Rigidity Percolation;Physical Review Letters;2024-01-02

2. A mechanistic model of the organization of cell shapes in epithelial tissues;Frontiers in Soft Matter;2023-09-29

3. Colloidal gels;The Journal of Chemical Physics;2023-09-05

4. Evidences of Conformal Invariance in 2D Rigidity Percolation;Physical Review Letters;2023-06-28

5. A set of hyper-viscoplastic critical state models with different friction mobilisation criteria;International Journal of Solids and Structures;2023-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3