Orthogonal experimental study on the influence of machining parameters on flat lapping of sapphire substrate

Author:

Wang Sheng1ORCID,Ruan Jiahong2,Xiao Shihao3,Deng Qianfa2,Zhao Tianchen4ORCID

Affiliation:

1. Department of Mechanical Engineering, Quzhou College of Technology 1 , Quzhou 324000, China

2. Ultra-Precision Machining Centre, Zhejiang University of Technology 2 , Hangzhou 310014, China

3. Zhejiang Haina Semiconductor Co., Ltd. 3 , Quzhou 324300, China

4. Key Laboratory of Air-Driven Equipment Technology of Zhejiang Province, Quzhou University 4 , Quzhou 324000, China

Abstract

Sapphire is extensively utilized in the optical, aerospace, and civil electronic industries due to its favorable optical, physical, and chemical characteristics. To enhance the efficiency and quality of sapphire lapping, an orthogonal experiment was conducted on a single-side sapphire substrate using a ceramic lapping plate. The study examined the impact of lapping plate material, lapping pressure, lapping speed, and abrasive particle size on the surface roughness, profile, and removal rate. By analyzing the signal-to-noise ratio and variance of machining parameters, the influence rule and influence of the weight of machining parameters on machining results were obtained. The results of the experiment demonstrate that the material removal rate of sapphire was positively affected by an increase in lapping pressure, speed, and abrasive particle size. Moreover, the removal rate of the SiC lapping plate was the highest among the experimental materials. The roughness of the sapphire surface decreased with increasing lapping pressure, speed, and abrasive particle size, while the SiC plate had the lowest surface roughness. The profile tolerance of sapphire diminished as the lapping pressure, lapping speed, and the abrasive particle size increased. Additionally, the ZrO2 lapping plate exhibited the most minor profile tolerance. The size of the abrasive particle significantly impacted the material removal rate, with a specific gravity exceeding 70%. Similarly, the lapping pressure had a significant effect on both the surface roughness and the profile tolerance. The ideal machining parameter combination comprised an abrasive particle size of 10 µm, a lapping pressure of 22 785.0 Pa, a lapping speed of 60 rpm, and a lapping plate of SiC. Under optimal machining conditions, sapphire exhibited a material removal rate of 0.65 µm/h, a surface roughness of 0.0920 µm, and a profile tolerance of 2.0915 µm after 20 min of lapping. This demonstrated that the lapping process enables highly efficient and high-quality machining of sapphire substrates.

Publisher

AIP Publishing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3