Garnet-based solid state batteries benefitting from an ionic/electronic mixed conductive interface constructed by lithiation of porous FeS2

Author:

Zeng Yuhan123,Zhang Yang234,Hu Jiulin234ORCID,Li Chilin234ORCID

Affiliation:

1. College of Chemistry and Materials Science, Shanghai Normal University 1 , Shanghai 200234, China

2. State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences 2 , Shanghai 201899, China

3. CAS Key Laboratory of Materials for Energy Conversion, Shanghai Institute of Ceramics, Chinese Academy of Sciences 3 , Shanghai 201899, China

4. Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences 4 , Beijing 100049, China

Abstract

Garnet-based solid-state lithium metal batteries are considered as the potential candidates for the next-generation energy storage systems due to their high energy density, wide operating temperature, and high safety. However, the poor wettability of the lithium metal anode/garnet interface, the large interface resistance, and the risk of lithium dendrites growing and even penetrating electrolytes during cycling limit the practical application of garnet-based solid-state lithium metal batteries. In this work, a porous network FeS2 with an amorphized structure is prepared by using the solvothermal method and used as the Li/garnet interface modification layer. The porous FeS2 can be in situ converted into a Li2S/Fe mixed conductive layer by the thermal lithiation of molten metallic lithium. This mixed conductive layer can significantly reduce the interface resistance, ensure the close contact between Li and garnet, and inhibit the growth of lithium dendrites. The interface resistance of the modified Li/FeS2-LLZTO (LLZTO is Li6.5La3Zr1.5Ta0.5O12) interface at 60 °C is as small as 15.20 Ω cm2. The ionic conductivity of fully lithiated FeS2 is estimated to be 1.58 × 10−6 S cm−1 at room temperature. The Li/FeS2-LLZTO/Li symmetrical cell can cycle stably for more than 400 h at a high current density of 400 μA cm−2, with the voltage polarization of only about 25 mV, and can withstand a larger current density of 600 μA cm−2 without the polarization exceeding 50 mV. These results demonstrate the feasibility of in situ lithiation of porous iron sulfide into a mixed ion/electron conductive layer as a solid-state garnet interface modification strategy and provide the new interface method for the development of high-performance solid-state lithium metal batteries.

Funder

National Natural Science Foundation of China

Program of Shanghai Academic Research Leader

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3