Quantum earth mover’s distance, a no-go quantum Kantorovich–Rubinstein theorem, and quantum marginal problem

Author:

Zhou Li123ORCID,Yu Nengkun4ORCID,Ying Shenggang1,Ying Mingsheng13ORCID

Affiliation:

1. State Key Laboratory of Computer Science Institute of Software, Chinese Academy of Sciences, Beijing, China

2. Max Planck Institute for Security and Privacy, Bochum, Germany

3. Tsinghua University, Beijing, China

4. Centre for Quantum Software and Information, School of Software, Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, NSW, Australia

Abstract

The quantum coupling of two given quantum states denotes the set of bipartite states whose marginal states are these given two states. In this paper, we provide tight inequalities to describe the structure of quantum coupling. These inequalities directly imply that the trace distance between two quantum states cannot be determined by the quantum analog of the earth mover’s distance, thus ruling out the equality version of the quantum Kantorovich–Rubinstein theorem for trace distance even in the finite-dimensional case. In addition, we provide an inequality that can be regarded as a quantum generalization of the Kantorovich–Rubinstein theorem. Then, we generalize our inequalities and apply them to the three tripartite quantum marginal problems. Numerical tests with a three-qubit system show that our criteria are much stronger than the known criteria: the strong subadditivity of entropy and the monogamy of entanglement.

Funder

Australian Research Council

Young Scientists Fund of the National Natural Science Foundation of China

Publisher

AIP Publishing

Subject

Mathematical Physics,Statistical and Nonlinear Physics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Generative model for learning quantum ensemble with optimal transport loss;Quantum Machine Intelligence;2024-01-31

2. Approximate Relational Reasoning for Quantum Programs;Lecture Notes in Computer Science;2024

3. On Quantum Optimal Transport;Mathematical Physics, Analysis and Geometry;2023-06

4. Monotonicity of a quantum 2-Wasserstein distance;Journal of Physics A: Mathematical and Theoretical;2023-02-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3