Finite-temperature properties of PbTiO3 by molecular dynamics simulations

Author:

Wang Jian-Tao123ORCID,Bu Kun124ORCID,Hu Fengxia123ORCID,Wang Jing125ORCID,Chen Changfeng6

Affiliation:

1. Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences 1 , Beijing 100190, China

2. School of Physical Sciences, University of Chinese Academy of Sciences 2 , Beijing 100049, China

3. Songshan Lake Materials Laboratory 3 , Dongguan, Guangdong 523808, China

4. School of Physics and Optoelectronic Engineering, Shandong University of Technology 4 , Zibo 255000, China

5. Fujian Innovation Academy, Chinese Academy of Sciences 5 , Fuzhou, Fujian 350108, China

6. Department of Physics and Astronomy, University of Nevada 6 , Las Vegas, Nevada 89154, USA

Abstract

PbTiO 3 is a prototypical ferroelectric perovskite that is known to undergo a temperature driven ferroelectric tetragonal to paraelectric cubic phase transition, but the understanding of some key phenomena and associated mechanisms underlying this transition remains unclear. Here, using molecular dynamics simulations based on first-principles effective Hamiltonian, we show the behaviors of the phase transition temperature Tc and adiabatic temperature change ΔT of PbTiO3 under an external electric field and tensile stress along the [001] direction. Our results show that the electric field E induces rising Tc via a linear relationTc∝ 0.3083E, rendering the phase transition to go from first-order with thermal hysteresis to second-order without thermal hysteresis above ∼200 kV/cm; meanwhile, a maximum electrocaloric response ΔTmax∼34 K is obtained under E=500 kV/cm. Moreover, external stress (σz) causes rising Tc via a linear relationTc∝160σz and improves the electrocaloric response ΔTmax when combined with the electric field. The present results offer insights into the physical processes and mechanisms that dictate finite-temperature properties of ferroelectric perovskite oxides, laying a foundation for further exploration of this intriguing class of materials.

Publisher

AIP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3