Leaky-wave radiating surface on heterogeneous high-κ material for monolithic antenna-frontend integration

Author:

Askarian Amirhossein1ORCID,Yao Jianping2ORCID,Lu Zhenguo3ORCID,Wu Ke1ORCID

Affiliation:

1. Poly-Grames Research Center and Department of Electrical Engineering, Polytechnique Montreal (University of Montreal) 1 , Montreal, Quebec H3T 1J4, Canada

2. School of Electrical Engineering and Computer Science, University of Ottawa 2 , Ottawa, Ontario K1N 6N5, Canada

3. Advanced Electronics and Photonics Research Center the National Research Council Canada (NRC) Ottawa 3 , Ontario K1A 0R6, Canada

Abstract

In a highly integrated analog radio-over-fiber transceiver, seamless integration of the antenna-frontend is crucial as an antenna is generally implemented on a high-κ material, which is set to highly degrade the antenna's performance. This work is concerned with the radiation behavior improvement of a planar leaky-wave antenna with an inductive partially reflecting surface (PRS) on a high-κ substrate for the development of a highly directive antenna. To begin with, we show how a thin and single-mode resonance (SMR) inductive PRS on high-κ materials in a planar leaky-wave antenna is set to provoke two resonance frequencies (i.e., PRS and cavity resonances) to converge, thereby diminishing the antenna's broadside directivity. By applying an equivalent circuit model, we explain how a multi-mode resonance (MMR) PRS can adequately be applied to address the underlying challenges. Subsequently, the leaky-wave radiation behavior of an antenna with a heterogeneous substrate is investigated and analytical equations are derived and verified with a full-wave simulation. The effects of material permittivity and thickness in a heterogeneous-cavity antenna on leaky-wave performance are investigated using these approximate yet accurate-enough equations. To justify the findings, two 9 × 9 planar leaky-wave antennas are prototyped on heterogeneous substrates based on SMR and MMR PRS and the radiation performances are compared. Our investigations reveal that in the proposed scenario, an MMR PRS can significantly enhance the antenna's broadside directivity by over 4 dBi at the resonance frequency (27.5 GHz), which is also set to improve radiation pattern compared to a SMR-based antenna. Finally, a single-fed dual-band aperture-shared antenna with a large frequency ratio (S-band and Ka-band) is developed and fabricated on a high-κ substrate based on the proposed MMR PRS.

Funder

National Research Council Canada

Publisher

AIP Publishing

Subject

General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3