2D materials-assisted heterogeneous integration of semiconductor membranes toward functional devices

Author:

Park Minseong1,Bae Byungjoon1ORCID,Kim Taegeon1,Kum Hyun S.2ORCID,Lee Kyusang13ORCID

Affiliation:

1. Department of Electrical and Computer Engineering, University of Virginia, Charlottesville, Virginia 22904, USA

2. Department of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, South Korea

3. Department of Material Science and Engineering, University of Virginia, Charlottesville, Virginia 22904, USA

Abstract

Heterogeneous integration techniques allow the coupling of highly lattice-mismatched solid-state membranes, including semiconductors, oxides, and two-dimensional materials, to synergistically fuse the functionalities. The formation of heterostructures generally requires two processes: the combination of crystalline growth and a non-destructive lift-off/transfer process enables the formation of high-quality heterostructures. Although direct atomic interaction between the substrate and the target membrane ensures high-quality growth, the strong atomic bonds at the substrate/epitaxial film interface hinder the non-destructive separation of the target membrane from the substrate. Alternatively, a 2D material-coated compound semiconductor substrate can transfer the weakened (but still effective) surface potential field of the surface through the 2D material, allowing both high-quality epitaxial growth and non-destructive lift-off of the grown film. This Perspective reviews 2D/3D heterogeneous integration techniques, along with applications of III–V compound semiconductors and oxides. The advanced heterogeneous integration methods offer an effective method to produce various freestanding membranes for stackable heterostructures with unique functionalities that can be applied to novel electrical, optoelectronic, neuromorphic, and bioelectronic systems.

Funder

National Science Foundation

U.S. Department of Energy

National Research Foundation of Korea

Publisher

AIP Publishing

Subject

General Physics and Astronomy

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3