Quantum and anharmonic effects in non-adiabatic transition state theory

Author:

Mulvihill Clayton R.1ORCID,Georgievskii Yuri1ORCID,Klippenstein Stephen J.1ORCID

Affiliation:

1. Chemical Sciences and Engineering Division, Argonne National Laboratory , Lemont, Illinois 60439, USA

Abstract

Quantitative descriptions of non-adiabatic transition rates at intermediate temperatures are challenging due to the simultaneous importance of quantum and anharmonic effects. In this paper, the interplay between quantum effects—for motion across or along the seam of crossing—and anharmonicity in the seam potential is considered within the weak coupling limit. The well-known expression for quantized 1-D motion across the seam (i.e., tunneling) in the linear terms approximation is derived in the thermal domain using the Lagrangian formalism, which is then applied to the case when tunneling is distributed along the seam of crossing (treating motion along the seam classically). For high-frequency quantum modes, a vibrationally adiabatic (VA) approach is developed that introduces to the non-adiabatic rate constant a factor associated with high-frequency wavefunction overlap; this approach treats the high-frequency motion along the seam quantum mechanically. To test these methodologies, the reaction N2O ↔ N2 + O(3P) was chosen. CCSD(T)-F12b/cc-pVTZ-F12 explorations of the 3A′-1A′ seam of N2O revealed that seam anharmonicity has a strong effect on the rate constant (a factor of ∼20 at 2000 K). Several quantum effects were found to be significant at intermediate/lower temperatures, including the quantum N–N vibration that was coupled with seam anharmonicity using the VA approach. Finally, a 1-D approximation to non-adiabatic instanton theory is presented to estimate the validity limit of the linear terms model at low temperatures (∼250 K for N2O). We recommend that the assumptions built into many statistical theories for non-adiabatic reactions—harmonic behavior, classical motion, linear terms, and weak coupling—should be verified on a case-by-case basis.

Funder

Office of Science

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3