Hydrodynamic aggregation of membrane inclusions due to non-Newtonian surface rheology

Author:

Vig Vishnu1,Manikantan Harishankar1ORCID

Affiliation:

1. Department of Chemical Engineering, University of California , Davis, California 95616, USA

Abstract

Biological membranes are self-assembled complex fluid interfaces that host proteins, molecular motors, and other macromolecules essential for cellular function. These membranes have a distinct in-plane fluid response with a surface viscosity that has been well characterized. The resulting quasi-two-dimensional fluid dynamical problem describes the motion of embedded proteins or particles. However, the viscous response of biological membranes is often non-Newtonian: in particular, the surface shear viscosity of phospholipids that comprise the membrane depends strongly on the surface pressure. We use the Lorentz reciprocal theorem to extract the effective long-ranged hydrodynamic interaction among membrane inclusions that arises due to such non-trivial rheology. We show that the corrective force that emerges ties back to the interplay between membrane flow and non-constant viscosity, which suggests a mechanism for biologically favorable protein aggregation within membranes. We quantify and describe the mechanism for such a large-scale concentration instability using a mean-field model. Finally, we employ numerical simulations to demonstrate the formation of hexatic crystals due to the effective hydrodynamic interactions within the membrane.

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3