Drag reduction in cylindrical wake flow using porous material

Author:

Du Hai1ORCID,Zhang Qinlin2,Li Qixuan2,Kong Wenjie2,Yang Lejie2

Affiliation:

1. Key Laboratory of Fluid and Power Machinery, Ministry of Education, Xihua University, Chengdu 610039, China

2. School of Energy and Power Engineering, Xihua University, Chengdu 610039, China

Abstract

Due to its unique pore structure, porous materials have the potential to be used in the fields of acoustic noise reduction and flow drag reduction control. In order to study their effects and mechanism of drag reduction on the flow around a circular cylinder, experiments are conducted in a low-speed wind tunnel with low turbulence intensity. The drag forces acting on a circular cylinder model are measured using wind tunnel balance when porous materials with different permeability are applied within different intersection angles on the trailing-edge and leading edge, and the flow fields are visualized with a particle image velocimetry system with high time resolution. The method of dynamic mode decomposition (DMD) is also used for reduced-order analysis of the vorticity field in the wake of the cylinder. The measured drag forces and wake flow fields are then compared with those of a smooth cylinder, and the results show that porous materials laid on the trailing-edge can reduce drag, when a porous material with 20 pores per inch is laid within 270° on the leeward side, the best effect of the drag reduction ratio of 10.21% is reached. The results of flow visualization indicate that after the porous material is applied, the vortex region in the wake of the cylinder is expanded; both the frequency of vortex shedding and the magnitude of vorticity fluctuation decrease; the Reynolds-shear-stress decreases significantly, and both indicate that vorticity is dissipated earlier. The results of DMD analysis show that porous materials can effectively relax the energy of vortices in different modes.

Funder

National Natural Science Foundation of China

Nanjing University of Aeronautics and Astronautics

the Central Government Guiding Local Science and Technology Development

the "Young Scholars" Program of Xihua University

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3