A graph neural network-based framework to identify flow phenomena on unstructured meshes

Author:

Wang L.ORCID,Fournier Y.1ORCID,Wald J. F.1,Mesri Y.2ORCID

Affiliation:

1. Department of Fluid Mechanics, Energy, Environment (MFEE), EDF Research and Development 2 , Chatou, France

2. Centre de Mise en Forme des Matériaux (CEMEF), Mines ParisTech-PSL University 1 , Sophia Antipolis, France

Abstract

Driven by the abundant data generated from computational fluid dynamics (CFD) simulations, machine learning (ML) methods surpass the deterministic criteria on flow phenomena identification in the way that they are independent of a case-by-case threshold by combining the flow field properties and the topological distribution of the phenomena. The current most popular and successful ML models based on convolutional neural networks are limited to structured meshes and unable to directly digest the data generated from unstructured meshes, which are more widely used in real industrial CFD simulations. We proposed a framework based on graph neural networks with the proposed fast Gaussian mixture model as the convolution kernel and U-Net architecture to detect flow phenomena based on a graph hierarchy generated by the algebraic multigrid method embedded in the open-source CFD solver, code_saturne. We demonstrate the superiority of the proposed kernel and U-Net architecture, along with the generality of the framework to unstructured mesh and unseen case, on detecting the vortices once trained on a single backward-facing step case. Our proposed framework can be trivially extended to detect more flow phenomena in three dimensional cases, which is ongoing work.

Funder

French National Research Agency

Publisher

AIP Publishing

Subject

Condensed Matter Physics,Fluid Flow and Transfer Processes,Mechanics of Materials,Computational Mechanics,Mechanical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3