Enhancing spin-transfer torque in magnetic tunnel junction devices: Exploring the influence of capping layer materials and thickness on device characteristics

Author:

Sadat Parvini Tahereh1ORCID,Paz Elvira2ORCID,Böhnert Tim2ORCID,Schulman Alejandro2,Benetti Luana2ORCID,Oberbauer Felix1ORCID,Walowski Jakob1ORCID,Moradi Farshad3ORCID,Ferreira Ricardo2,Münzenberg Markus1ORCID

Affiliation:

1. Institut für Physik, Universität Greifswald 1 , Greifswald, Germany

2. INL—International Iberian Nanotechnology Laboratory 2 , Avenida Mestre José Veiga, s/n, 4715-330 Braga, Portugal

3. ICELab, Aarhus University 3 , Aarhus, Denmark

Abstract

We have developed and optimized two categories of spin-ransfer torque magnetic tunnel junctions (STT-MTJs) that exhibit a high tunnel magnetoresistance ratio, low critical current, high outputpower in the micro-watt range, and auto-oscillation behavior. These characteristics demonstrate the potential of STT-MTJs for low-power, high-speed, and reliable spintronic applications, including magnetic memory, logic, and signal processing. The only distinguishing factor between the two categories, denoted as A-MTJs and B-MTJs, is the composition of their free layers, two CoFeB/0.21 Ta/6 CoFeSiB for A-MTJs and two CoFeB/0.21 Ta/7 NiFe for B-MTJs. Our study reveals that B-MTJs exhibit lower critical currents for auto-oscillation than A-MTJs. We found that both stacks have comparable saturation magnetization and anisotropy field, suggesting that the difference in auto-oscillation behavior is due to the higher damping of A-MTJs compared to B-MTJs. To verify this hypothesis, we employed the all-optical time-resolved magneto-optical Kerr effect technique, which confirmed that STT-MTJs with lower damping exhibited auto-oscillation at lower critical current values. Additionally, our study aimed to optimize the STT-MTJ performance by investigating the impact of the capping layer on the device’s response to electronic and optical stimuli.

Funder

european Union Horizon 2020

Publisher

AIP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3